Computationally Efficient Unscented Kalman Filtering Techniques for Launch Vehicle Navigation using a Space-borne GPS Receiver

نویسندگان

  • Sanat Biswas
  • Li Qiao
  • Andrew G. Dempster
چکیده

The Extended Kalman Filter (EKF) is a well established technique for position and velocity estimation. However, the performance of the EKF degrades considerably in highly non-linear system applications as it requires local linearisation in its prediction stage. The Unscented Kalman Filter (UKF) was developed to address the non-linearity in the system by deterministic sampling. The UKF provides better estimation accuracy than the EKF for highly non-linear systems. However, the UKF requires multiple propagations of sampled state vectors in the measurement interval, which results in higher processing time than for the EKF. This paper proposes an application of two newly developed UKF variants in launch vehicle navigation. These two algorithms, called the Single Propagation Unscented Kalman Filter (SPUKF) and the Extrapolated Single Propagation Unscented Kalman Filter (ESPUKF), reduce the processing time of the original UKF significantly and provide estimation accuracies comparable to the UKF. The estimation performance of the SPUKF and the ESPUKF is demonstrated using Falcon 9 V1.1 launch vehicle in CRS-5 mission scenario. The launch vehicle trajectory for the mission is generated using publicly available mission parameters. A SPIRENT GNSS simulator is used to generate the received GPS signal on the trajectory. Pseudo-range observations are used in the EKF, UKF, SPUKF and the ESPUKF separately and the estimation accuracies are compared. The results show that the estimation errors of the SPUKF and the ESPUKF are 15.44% and 10.52% higher than the UKF respectively. The processing time reduces by 83% for the SPUKF and 69.14% for the ESPUKF compared to the UKF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

Modified Gaussian Sum Filtering Methods for INS/GPS Integration

In INS (Inertial Navigation System) /GPS (Global Positioning System) integration, nonlinear models should be properly handled. The most popular and commonly used method is the Extended Kalman Filter (EKF) which approximates the nonlinear state and measurement equations using the first order Taylor series expansion. On the other hand, recently, some nonlinear filtering methods such as Gaussian S...

متن کامل

Sensitivity Analysis of Extended and Unscented Kalman Filters for Attitude Estimation

The extended Kalman filter (EKF) and unscented Kalman filter (UKF) for nonlinear state estimation with both additive and nonadditive noise structures are presented and compared. Three different Global Positioning System (GPS)/inertial navigation system (INS) sensor fusion formulations for attitude estimation are used as case studies for the nonlinear state estimation problem. A diverse set of a...

متن کامل

Improvement of Navigation Accuracy using Tightly Coupled Kalman Filter

In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...

متن کامل

Computationally Efficient Receiver Design for Mitigating Multipath for Positioning with LTE Signals

A receiver for positioning with LTE signals, which could mitigate multipath in a computationally efficient fashion is presented. The receiver uses an orthogonal frequency division multiplexing (OFDM)–based delay-locked loop (DLL) to track the received LTE signals. The ranging error performance in an additive white Gaussian noise (AWGN) channel is evaluated numerically. The results demonstrate r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.09701  شماره 

صفحات  -

تاریخ انتشار 2016